
ASCEM-HPC-2011-03-1

High-Level Design of Amanzi,
the Multi-Process

High Performance Computing Simulator

January 11, 2012

United States Department of Energy

	

D. Moulton, LANL M. Buksas, LANL L. Pritchett-Sheats, LANL M. Day, LBNL
M. Berndt, LANL R. Garimella , LANL G. Hammond, PNNL J. Meza, LBNL

High-Level Design of the Multi-Process HPC Simulator

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government.
Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or
their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use
or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned
rights; or

3. endorsement or recommendation of any specifically identified commercial product,
process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect
those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for
U.S. Department of Energy

2 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

Authorization:

01/11/2012

Dr. Paul Dixon, Los Alamos National Laboratory
Multi-Lab ASCEM Program Manager

Date

01/11/2012

Dr. David L. Brown, Lawrence Berkeley National Laboratory
ASCEM Technical Integration Manager (Acting)

Date

01/11/2012

Dr. J. David Moulton, Los Alamos National Laboratory
ASCEM Multi-Process HPC Simulator Thrust Lead

Date

01/11/2012

Dr. Carl I. Steefel, Lawrence Berkeley National Laboratory
ASCEM Multi-Process HPC Simulator Deputy Thrust Lead

Date

Concurrence:

Dr. Mark Williamson, ASCEM Program Manager
EM-32 Groundwater & Soil Remediation

Date

Kurt Gerdes, EM-32
Office Director for Groundwater & Soil Remediation

Date

3 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

Table of Contents

Executive Summary 5

1 Introduction 6

2 High-Level Design of Amanzi 7
2.1 Simulation Driver . 9

2.2 Decomposition of Modeling and Simulation . 9

2.2.1 Multi-process Coordinator . 9

2.2.2 Process Kernels . 10

2.3 HPC Toolsets . 10

2.3.1 Mesh Infrastructure . 10

2.3.2 Discretizations Toolsets . 11

2.3.3 Solvers . 13

2.4 Core Services . 14

3 Structured and Unstructured Options 15
3.1 Structured Grid . 15

3.2 Unstructured Grid . 16

3.3 Common source . 17

4 Third-Party Libraries 17

5 Computer Architectures 18

6 Interaction with Platform 19
6.1 Problem setup . 19

7 Conclusions 20

References 22

4 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

Executive Summary
The Advanced Simulation Capability for Environmental Management (ASCEM)

program is developing an approach, and the supporting open-source tools, to under-
stand the fate and transport of contaminants in natural and engineered systems. The
multi-process High Performance Computing (HPC) simulator, named Amanzi, pro-
vides a flexible and extensible simulation capability for ASCEM. The goal of this
document is to establish a common understanding of the high-level design strategy for
all stakeholders in ASCEM as well as to describe the overall design strategy. However,
explicit implementation details are beyond the scope of this document, and will be ad-
dressed in future Amanzi documentation. The intended audience for this document
includes Amanzi developers, members of the Platform and Site Applications Thrusts,
and other parties interested in the ASCEM project.

This design document begins with a brief overview of the goals of the ASCEM
project, and its organizational structure. In particular, this discussion establishes the
need for a flexible and extensible open-source simulation capability. Next a high-level
description of the hierarchical object-oriented design of Amanzi is presented and key
terminology is introduced. Specifically, in ASCEM a process model refers to a com-
plete mathematical description of a physical or bio-geochemical process. A specific
subsurface flow and reactive transport scenario of interest to DOE-EM is then de-
scribed by a set of coupled process models. To capture this modular view of coupled
processes, the design introduces the concept of a Multi-Process Coordinator (MPC),
and defines a Process Kernel (PK) as the discrete representation of these process mod-
els. The lower-level toolsets that support the PKs are also discussed, namely, the mesh
infrastructure, discretization, reaction, and solvers toolsets are highlighted. To effec-
tively model sites with complex hydrostratigraphy, as well as engineered systems, a
dual unstructured/structured mesh capability is being developed. The high-level con-
cepts needed to support these two approaches are presented. Significant capabilities
are available in existing Third Party Libraries (TPLs) and are leveraged in Amanzi.
The role of key TPLs, such as Trilinos and BoxLib, is discussed. Finally, a high-level
overview of the Platform Toolset, Akuna, is presented, and its role in driving Amanzi
is discussed.

5 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

1 Introduction

This document describes the high-level design strategy for Amanzi, the Multi-Process High Per-
formance Computing (HPC) Simulator for the Advanced Simulation Capability for Environmental
Management (ASCEM) program. The goal of ASCEM is to develop a transformational approach
and state-of-the-art scientific tools for integrating data, software, and scientific understanding to
predict the fate of contaminant transport in the subsurface. The program combines open-source
high performance computing algorithms, models, data analysis and integration approaches, and an
evolving understanding of subsurface hydrological-biogeochemical processes. ASCEM will also
provide other DOE programs, as well as the overall scientific community, with a code that will be
applicable to a variety of subsurface flow and transport scenarios. It is envisioned that the commu-
nity code will be updated and augmented as new scientific insights are developed through DOEs
research programs in the Office of Advanced Scientific Computing Research (ASCR) and the Of-
fice of Biological and Environmental Research (BER), as well as other federal research programs.

The ASCEM program is organized into three Thrust Areas: 1) High Performance Computing
(HPC) Multi-Process Simulator, 2) Platform and Integrated Toolsets, and 3) Site Applications. The
HPC Thrust includes structured and unstructured meshing approaches; new solvers for coupled
physical and geo-biochemical processes; advanced methods of discretization in time and space;
and capabilities to select, and coordinate the use of problem-specific processes. The Platform
Thrust provides toolsets that facilitate model setup and analysis, parameter estimation and uncer-
tainty quantification, risk assessment and decision support, information and data management, and
visualization in a consistent and flexible user interface and modeling work flow. The Site Ap-
plication Thrust coordinates and implements demonstrations through working groups to provide
data and feedback to developers and to ensure that the software is developed in a manner that will
engage users and benefit DOE EMs remediation obligations.

Amanzi is the flexible and extensible computational engine for ASCEM that will simulate the
coupled processes described by the conceptual models developed using the ASCEM Platform,
Akuna. These conceptual models span a range of process complexity in flow and reactive-transport.
Detailed mathematical descriptions of these models are provided in [16].

The intended audience for this document includes Amanzi developers, members of the Platform
and Site Applications Thrusts, and other parties interested in the ASCEM project. The goal of
this document is to establish a common understanding of the high-level design strategy for all
stakeholders in ASCEM as well as to describe the overall design strategy. This document does
not, however, contain explicit implementation details. Priorities, such as the relative importance of
particular process models, or details of the interface between Amanzi and Akuna, are not addressed
in this document, except for a brief summary.

A critical aspect of the ASCEM project is to provide tools that support a graded and iterative
approach to conceptual model development. To meet this goal, the Amanzi design incorporates the
following high-level goals:

• Provide a set of robust and numerically convergent discrete representations of the coupled
processes that describe processes, including flow and reactive transport, in porous media.

• Provide a dual set of capabilities that allow for both a structured and an unstructured mesh
option.

6 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

• Accelerate the development and verification of a complete end-to-end simulation capability
by leveraging pre-existing software and numerical algorithms.

• Design for execution on a diverse range of modern computing hardware, taking optimal
advantage of high-performance features.

• Provide a well-defined interface between Amanzi, the HPC Simulator, and Akuna, the AS-
CEM Platform toolset.

One of the main strategies for achieving these goals is to use a modular object-oriented design.
Modularity will allow ASCEM software developers to quickly prototype and develop new capabil-
ities as needed by site users. In addition, by clearly defining application programming interfaces,
ASCEM will allow the inclusion of new processes and algorithms from researchers in the commu-
nity thereby creating an extensible community code. The use of an object-oriented programming
(OOP) model will also allow for a more flexible simulator. An excellent review of modern develop-
ment and object-oriented design methods is given in [11]. The toolsets (described in the following
sections) for both the physical processes and the numerical methods will develop APIs (Applica-
tion Programming Interfaces) to define how they provide access to their data and methods. With
this approach, control and responsibility are clearly defined, and new models or algorithms can
be adopted without refactoring large sections of the code. Although the Amanzi design will use
an object-oriented style, it does not require that the lower level functions specifically use an OOP
language. This additional freedom will maximize compatibility with other software packages.

In this document, the methodologies undertaken by the ASCEM team to address the above design
criteria are presented. First, the basic structure of the HPC simulator is outlined. This discussion
includes a description of the interface to the mathematical representation of the problem-specific
components of the porous media application. Then an overview of the key algorithmic components
of the simulator is given. A discussion of the role of third-party libraries that are included with the
Amanzi build follows in section 4. Finally, the interface between Amanzi and the Platform Toolset,
Akuna are outlined.

2 High-Level Design of Amanzi

Amanzi takes as input a conceptual model, which describes a set of coupled processes such as
flow and reactive transport, and evolves these processes in time, generating output for analysis and
visualization. To support the graded and iterative approach to conceptual model development that
is required by EM, Amanzi must be both modular and extensible. This objective is achieved with
a hierarchical and modular design that captures all the steps involved in translating a conceptual
model to output for analysis. To support this hierarchical view an object oriented programming
model is used, with higher level objects and much of the code being developed in the C++ language.
Specifically, the design has high-level objects that abstract process models and their coupling,
supporting toolsets that provide the building blocks for these high-level objects, and low-level
objects and services that are used by the supporting toolsets. These three component levels are
shown schematically in Figure 1.

7 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

Amanzi

Process
Kernels

HPC Toolsets
Grids &

Discretizations
Chemical
Reactions

Multi-scale
Linear & Nonlinear

Solvers

Integrated
Testing

Parallel I/O

Hardware
Abstractions

Data Structures

HPC Core Framework

Figure 1: Schematic of the main components of Amanzi.

The Amanzi simulator will provide the following algorithmic components:

• Simulation Driver: Initialize the Multi-Process Coordinator, direct I/O, and instruct the
MPC to execute a series of time steps.

• Multi-process Coordinator (MPC): Initialize/maintain state data, implement sequence of
process kernels for time step, optionally control solution-adaptive mesh generation, and sup-
port recursive implementation.

• Process Kernels (PK): Numerical implementation of physical process models

• HPC Toolsets for the implementation of process kernels:

– Mesh infrastructure: Define/allocate data containers, provide interface to underlying
data and communication primitives supporting distributed memory architectures.

– Discretizations: Low-level toolsets for temporal and spatial derivative approximations

– Reactions: classes depicting chemical species and reactions on a cell.

– Solvers: Numerical solution of linear and nonlinear equation systems.

• HPC Core Framework: Parallel I/O, data structures, error handling.

The requirements of each of these components is discussed below. An overall schematic of the
design is displayed in Figure 2. Implementation of the corresponding software is tied closely with
the assumptions imposed by the underlying data structures, and these in turn depend directly on
each of the supported mesh options.

8 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

2.1 Simulation Driver

The Simulation Driver is responsible for the setup and execution of simulation through the in-
stantiation of the MPC, or the base MPC if there is an MPC hierarchy (discussed below). The
Simulation Driver interacts with the input from the Platform to collect the problem setup, com-
puting environment (e.g., processor map), method specification, and create the necessary internal
objects. It then instructs the MPC to perform a set of time-steps according to the input, and to
dump visualization data at a prescribed sequence of steps. In addition, it creates and passes an
observation object, which includes a specification of any requested observation data that the MPC
needs to collect, and a container for the MPC to store this data. These observations are small
amounts of data needed by various Platform Toolsets, such as Parameter Estimation, to perform
their analysis and track simulation progress. For example, the observation data may include a time
series of concentrations at a specific location.

2.2 Decomposition of Modeling and Simulation

2.2.1 Multi-process Coordinator

The Multi-Process Coordinator (MPC) marshals the complete numerical approximation to the
mathematical problem being solved in order to implement a single discrete time step advance.
The MPC time step consists of a sequence of PK calls that compose the complete model; it man-
ages the current state of the system and any additional data associated with the conceptual model
(including a copy of the previous state, if necessary), and gathers/dumps this data at the request of
the Simulation Driver for visualization and restarts. The MPC additionally gathers the observation
data requested from the simulation driver and provides various bookkeeping and recovery func-
tions, such as queries to establish discrete time step sizes compatible with the entire set of PKs,
and the management of failed time step attempts (e.g., decreasing the step size and managing a
second attempt).

Under the structured grid option, the MPC implements an adaptive mesh refinement (AMR) strat-
egy. A corresponding adaptive capability may eventually be supported for the unstructured grids.
For structured grids, AMR is implemented using a recursive mesh generation and sub-cycling in-
tegration strategy. When the Simulation Driver constructs the base MPC object, it communicates
sufficient information to allow the instantiation of a base mesh object. If automatic meshing is sup-
ported, solution errors are estimated over the state and a refined mesh is generated over a subregion
of the original domain. A child MPC object is then constructed and maintained by the parent MPC
object, and the process repeats until the solution is adequately represented. When the simulation
driver requests a time step, the base MPC first coordinates the PKs to effect a time step of the algo-
rithm on the base mesh, but then follows with a recursive call to the child MPC to advance the child
mesh over the same time interval. When the child MPC has completed the request, the state data
on the composite mesh system is synchronized using special PKs that are managed by the parent
MPC. Error estimation procedures are performed on the parent mesh data in order to determine
a new set of meshing instructions for the child MPC, and a new child is created by reusing data
on overlap with the old child MPC, and otherwise transferring (interpolating) data from the parent
mesh. Note that recursion is not mandatory for dynamic mesh refinement in general, but it does

9 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

MPC

(Base)
PK: Flow

Richards
PK: Transport

Advective

PK: Reactions

Geochemistry

HPC Toolsets

Mesh Infrastructure Discretizations Solvers

HPC Core Framework (services) and Third Party Libraries

Figure 2: Schematic showing a base Multi-Process Coordinator (MPC) that has instantiated pro-
cess kernels (PKs) for flow, transport, and reaction. These high-level objects leverage the underly-
ing toolsets, core services, and third party libraries to evolve the numerical simulation in time.

represent a key aspect of the structured grid implementation framework.

2.2.2 Process Kernels

Process Models are the mathematical description of a specific, reasonably independent physical
or geo-biochemical phenomena. Each process model will necessarily involve some quantities that
it shares with other processes. For example, the concentration of a primary species is involved
in both transport and reaction. Process Kernels (PKs) are the software objects that implement a
particular numerical approximation to a Process Model, such as flow and transport. Each PK is
designed to be self-contained, using only information provided through it’s interface to compute
an update to the state of the system. Implementation of a PK depends on the mesh in general, and
will involve the discretization and solver toolsets to interact directly with the data, as required.

2.3 HPC Toolsets

2.3.1 Mesh Infrastructure

The mesh provides a fundamental data structure that bridges the conceptual site model with the nu-
merical methods, and is ultimately the building block that connects the resulting simulation with
the computing hardware. Mesh infrastructure refers to the framework used to store a description of
the mesh (physical location and state quantities), implement memory allocation and parallel com-
munication activities that can be tailored specifically to the data layout. The mesh infrastructure

10 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

provides an API that provides efficient access to mesh entities, and access to underlying state data,
as appropriate to the specific meshing model, in order to support the construction of PKs.

Unstructured meshes are an effective approach for capturing the complex geometry of the hydros-
tratigraphy and topography found at many sites. Amanzi will support more general cell types,
such as polyhedra, as this is particularly advantageous at pinchouts or fault intersections in three
dimensions. On these unstructured meshes, Amanzi makes no a priori assumptions about the lay-
out of the data in memory maps to physical space. The mesh infrastructure reads a mesh from a
file, in serial or parallel; creates the necessary data structures for important mesh entities, such as
faces and cells; and provides access to this data through its API. To facilitate parallel simulations
on distributed memory systems, the mesh infrastructure manages all connectivity and ghost cell
data across processors. At this time, the unstructured option for Amanzi supports four different
mesh frameworks: STK mesh, which is part of the Trilinos project, MOAB (the Mesh-Oriented
datABase), MSTK (MeSh ToolKit), and SimpleMesh, a useful debugging and testing mesh. The
common interface to the four frameworks provides access to local mesh data appropriate for use in
the Discretization Toolsets and Process Kernels.

The structured mesh infrastructure uses BoxLib, a block-structured adaptive mesh refinement
(AMR) library, to enable the efficient tracking of solution features and accurate modeling of fine-
scale spatial features, including engineered structures. On each mesh block the mesh infrastructure
presents the data in a structured regular layout that simplifies discretization and metadata opera-
tions, such as those related to point-to-point data communication. Thus, while the assumption
of block-structured data places restrictions on the geometric generality of the simulation domain,
it enables significant algorithm simplification and optimizations within the PK and mesh imple-
mentations. It also fundamentally exposes the details of direct data access to the PK and MPC
layers.

2.3.2 Discretizations Toolsets

The continuum models of interest here are most often expressed as a system of differential equa-
tions that include conservation laws and constitutive relationships involving spatio-temporal dif-
ferential operators. Additionally, in some discretization methods material properties must be in-
terpolated in space and time in order to construct consistent numerical approximations of the flow
and transport models. The Spatial and Temporal Discretization Toolsets provide mesh-specific
interfaces to representations of these operators for use in Process Kernels implementations. The
toolsets and kernels may be combined to provide a specialized functionality if such constructions
are particularly advantageous, as is noted in the discussion of structured discretization methods
below. In addition, these toolsets include the Reaction Toolset to simulate the geo-biochemical
reactions that are required by the model. In the future it may include additional toolsets such as a
Multiscale Toolset to support various multiscale, upscaling and sub-grid algorithms.

Temporal Discretization Toolset
Stiff time-dependent simulations often arise with the Richards Model for unsaturated flow, multi-
phase flow, and transport. The Temporal Discretization Toolset supports the well-established
method-of-lines (MOL) or semi-discretization approach for solving systems of partial differen-

11 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

tial equations. In MOL the spatial discretization is separated from the time operator, and treated
simply as a time-dependent forcing term for a large-scale system of ordinary differential equations
(ODEs). The resulting ODEs may be integrated using explicit or implicit methods. Implicit meth-
ods are typically better suited for systems exhibiting a wide range of temporal scales, but lead to a
large system of coupled nonlinear equations for the discrete system that must be solved with itera-
tive schemes. Explicit schemes are simpler to implement, but are limited typically to the smallest
timescales present in the system and may thus be impractical for relatively long-time integrations.
The Temporal Discretization Toolset provides access to both implicit and explicit integration ap-
proaches, including forward and backward Euler methods and BDF2, and are used for computing
time-dependent and steady solutions.

When the time scales of the system are clustered/separated, there are considerable computational
advantages to more tightly coupling the spatial and temporal discretizations. For example, when
the fluid flow in a system is incompressible, the pressure field becomes elliptically coupled through-
out the domain, while fluid advection remains hyperbolic with wave-like propagation that evolves
on a finite timescale. A higher-order IMPES-like approach is ideally suited for evolving such flows
with minimal discrete phase errors. Amanzi’s IMPES-like approach is based on an implicit solution
of pressure and a time-explicit evolution of the mass conservation equations. It is worth noting that
while these IMPES methods can be implemented in the context of nearly any meshing strategy,
particularly efficient IMPES methods are possible on structured orthogonal grids, details for which
are described in [13].

Spatial Discretization Toolsets
On unstructured meshes Amanzi includes modeling of single-phase Darcy flow in saturated media,
and Richards equation in unsaturated media. These models are described by linear and nonlinear
elliptic/parabolic PDEs, respectively. To discretize these continuum models a mass conservative
(also known as compatible) discretization based on mimetic finite differences is used. This dis-
cretization generalizes many popular methods (finite volumes and finite elements) from existing
codes and removes many limitations related to grid geometry and parameter anisotropy. In par-
ticular, the Mimetic Finite Difference (MFD) method that was designed for convex hexahedral
cells [12] has been implemented. Unlike a conventional two-point flux approximation, popular in
subsurface modeling due to their simplicity but exhibiting O(1) error on non-orthogonal hexahe-
dral meshes, the MFD method provides a second-order accurate approximation of the pressure.
Support for general polyhedral meshes using the appropriate MFD method [5] is being developed.

Purely advective transport of concentration on unstructured meshes is described by a hyperbolic
conservation law. On unstructured meshes, a first-order accurate monotone upstream-centered
scheme for conservation laws (MUSCL) [19] is provided. This scheme is often referred to as the
donor scheme and is commonly used in reactive-transport simulation codes. In addition, a second-
order MUSCL scheme with Barth-Jespersen limiters [2] is provided to capture the sharp front of an
evolving plume more accurately. This scheme reduces the numerical dispersion significantly and
makes the consideration of more general transport models that include hydrodynamic dispersion
and molecular diffusion possible. These additional terms are discretized with linear [1, 8] and non-
linear [14, 15, 10] MPFA schemes. The motivation for implementing these two types of schemes
is to provide flexibility in achieving a discrete maximum principle on general meshes.

12 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

For multi-phase flow on structured orthogonal grids, a semi-implicit approach is employed to
solve the component densities equations resulting from the IMPES algorithm described earlier.
A second-order accurate Godunov method is used to determine the advection term. The Riemann
solver used in Amanzi is capable of capturing the characteristic behaviors of the resulting non-
linear hyperbolic system accurately [3, 18, 17]. The diffusion term is then discretized based on
a Crank-Nicolson scheme. Development and application in the block-structured AMR setting of
interest here follows the extension presented in [13]. Similarly, a second-order accurate Godunov
method is used to solve the transport equations for the chemical species.

Reaction Toolset
Unlike flow and transport processes, which require numerical representation of spatial gradients
and other operations involving multiple grid cells, geochemical and microbiological processes can
be described within a discretized control volume (i.e., at a single point). Because of this, it is
advantageous to separate the numerical treatment of the reactions from the flow and transport
components of the solver. The MPC coordinates the strategy to couple the integration of the
geochemical and microbiological processes to other processes.

The Reaction Toolset provides classes to depict chemical species and reactions in a cell in the
mesh. The Chemical reactions implemented include equilibrium aqueous complexation, mineral
precipitation–dissolution, sorption (i.e. isotherm–based, ion exchange, equilibrium surface com-
plexation), and a general kinetically-controlled reaction for aqueous species to account for sequen-
tial decay with daughter products. Also included is a class for activity coefficient calculations.
The Beaker class serves as both a container for chemical species and reaction objects and employs
Newton’s method to solve the resulting reaction ODE. A simple API for the Reaction Toolset was
developed to ensure that these processes could be readily coupled to transport and flow models,
whether they are represented on structured or unstructured meshes.

2.3.3 Solvers

Linear and nonlinear solvers typically account for a significant fraction of execution time in numer-
ical codes for integrating conservation laws, particularly if the integrations are based on partially
or fully implicit temporal discretizations. It is thus critical to streamline these components of the
solution as much as possible. In Amanzi, this efficiency is achieved by combining a broad range
of general purpose solution strategies, with specific solver designs that leverage knowledge of the
system and implementations that maximally exploit known structures of the data organization.

The nonlinear solvers in Amanzi are based on Newton-type iterative schemes. The unstructured
discretizations leverage the nonlinear solver packages provided by Trilinos, which provide im-
plementations of Newton-Krylov (NK) and Jacobian-Free NK (JFNK) algorithms. In addition,
a nonlinear Krylov accelerated inexact Newton method was implemented within the the Trilinos
nonlinear solver package.

Developing effective approximations of the Jacobian matrix to precondition the Krylov iterations
is critical to the efficiency and scalability of these solvers. To this end, knowledge of the coupled
processes must be combined with knowledge of the mathematical properties of their discrete rep-
resentations, and these in turn are intimately coupled to the physical layout of the data. As a result,

13 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

PK::Reactive Transport

MPC

PK::
Transport

PK::
Reactions

Figure 3: Schematic showing the instantiation of an MPC with weak sequential coupling of trans-
port and reactions as a preconditioner for a fully-implicit Reactive Transport kernel

effective preconditioning strategies may require direct interfaces with the MPC in order to provide
a natural and efficient mechanism to logically associate physical processes with matrix sub-blocks
of the Jacobian. However, this approach will enable the construction of simplified approximations
to the Jacobian through iterative lagging or reduced order discretizations, and generalized linear
solver approaches will support the use of different solvers for each block.

Large-sparse linear systems of equations arise through approximations of the Jacobian, or the
discretization of a linear processes. For general unstructured meshes, these linear systems are
solved with symmetric or nonsymmetric Krylov-based methods, and preconditioned with algebraic
multigrid. Using multigrid as a preconditioner is critical to the efficiency and scalability of any
system with an elliptic component, such as a pressure equation. Both Krylov solvers and multilevel
solvers are available in the Trilinos framework. In the case of linear systems for structured grid
representations, geometric multigrid provides a robust and scalable framework for linear solution
approaches. These specialized solvers are available in the BoxLib library.

2.4 Core Services

The HPC Core Framework is responsible for the infrastructure that the simulation code will be
built on. It is a diverse set of capabilities including build system tools; parallel input and out-
put functionality; uniform error handling and testing; and scripting tools for input file creation.
These features link all the parts of Amanzi, and define how it interacts with the Platform and Site
Applications teams in ASCEM. Consequently, the Amanzi design philosophy strives to create a de-
velopment environment that is intuitive to use and flexible enough to adapt to the changing needs
of end-users and developers over the lifetime of the project. Developers leverage existing tools and
software whenever possible with the understanding that providing a solution to meet the project’s
needs is the priority.

The I/O library is particularly important for Amanzi, as it provides output for visualization and
input/output for restarts. It creates the restart and visualization files, and sets up their internal
structure. It provides a simple interface for the MPC to interact with these files, as the MPC
is responsible for managing the restart and visualization files for the simulation. The I/O library
supports interfaces to several output file formats, including CGNS (the CFD General Notation Sys-
tem), GMV (General Mesh Viewer), and HDF5 (Hierarchical Data Format version 5). The latter,
HDF5 is preferred as parallel reading and writing is only available for this format. Meta data in
the Xdmf format, which is uses XML, is written along with the HDF5 file. Visualization packages,
such as VisIt, utilize the Xdmf file to navigate the HDF5 file layout. The Xdmf information is

14 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

managed inside the Output library and automatically written with the HDF5 file.

3 Structured and Unstructured Options

The Amanzi design features a dual capability that supports both structured and unstructured mesh
options. Although both options target identical capabilities from a mathematical point of view,
each approach has distinct numerical advantages. Amanzi presents seamless access to both solution
approaches, allowing the end-user to select the option that is most appropriate for the requirements
of the specific problem at hand. It is important to acknowledge that the assumptions regarding the
data layout play a key role in the implementation of the various components. The sections below
highlight the advantages, key design elements, and the workflow of each meshing option.

3.1 Structured Grid

The structured grid component of Amanzi is based on the BoxLib [4] implementation of Adaptive
Mesh Refinement (AMR). BoxLib is an extensive library of C++ and Fortran classes and func-
tions to support AMR calculations on modern distributed memory massively parallel computing
architectures. In AMR, a subregion of the computational domain is represented as the union of
rectangular grid patches, each of which consists of cells with a uniform grid spacing that is smaller
(by a factor of two or four in each dimension) than the cells of the underlying coarse cells. The
union of rectangular subgrids which constitute the fine level mesh overlay coarse cells in regions
where local errors are deemed too high. Additional refinement levels are added dynamically un-
til the solution is adequately resolved. Each subgrid of a level consists of a logically rectangular
block of cells, typically 32-64 per dimension. A large simulation may contain tens of thousands
of subgrids. Rectangular subgrids enable the use of high-performance PDE integration methods
whose convergence properties are well understood.

In the AMR BoxLib design the nested refinements have boundaries that coincide with the grid lines
of the underlying coarse mesh. This feature greatly simplifies the maintenance of key numerical
properties of PDE discretizations, such as discrete conservation of numerical flux approximations.
On a given AMR refinement level, the boxes exist in a global index space, which greatly simplifies
many metadata operations, such as the evaluation of box intersections, data communication, and
transferring data across refinement levels (i.e. interpolation, averaging). This also greatly simpli-
fies the interface to the raw data at the lowest levels of the implementations, such as the evaluation
of gradient discretizations.

AMR is specifically designed for efficient numerical evolution of PDE-based models that can be
expressed in conservation form. The hierarchical mesh system is constructed in a telescoping style,
where refined coarse cells and their faces are exactly overlayed by fine cells at the next level. In this
composite mesh hierarchy, the solution at any point in space is taken from the finest cell covering
that location.

BoxLib is loosely built on an object-oriented paradigm, where the details of the data structure and
operations on that data are “hidden” or encapsulated into object classes. The BoxLib foundation
classes provide a number of optimized data structures for scalable distribution and manipulation

15 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

of block-structured data. In addition, the data structures include a highly tuned set of routines for
portable, scalable I/O, and a generalized interface to dynamic load and memory balancing.

Extensive experience with this design has shown the need for a hybrid approach that exposes some
of the underlying formats to simultaneously allow convenient expression and extreme efficiency on
modern computing architectures. The BoxLib library is also hybrid in the sense that C++ is used
primarily for dynamic memory management and control flow, while the numerically intensive
portions of the code are typically expressed in FORTRAN.

The fundamental parallel data container in BoxLib is the MultiFab, which is the class that en-
capsulates FORTRAN compatible arrays defined on unions of block-structured data chunks. The
grids that make up a MultiFab are distributed among the processors using a dynamic distribution
strategy which also caches information necessary for efficient message passing of ghost cell data.

To maximize portability of the library, BoxLib currently uses only core MPI functionality. More-
over, the MPI specific library calls are encapsulated within a class that presents an abstraction of the
message passing environment. The abstraction facilitates porting of the library to other message
passing environments as well.

3.2 Unstructured Grid

In the last decade unstructured mesh toolkits and libraries have progressed significantly, making
the development of large-scale parallel simulation capabilities viable. Recently there has been
growing support in these mesh toolkits for polygonal and polyhedral elements, which are ideal for
capturing complex geometric features common in subsurface environments. The Amanzi mesh
infrastructure is designed as a lightweight layer that wraps several mesh toolkits in a common API.
The supported mesh toolkits include the Mesh-Oriented datABase (MOAB), the MeSh ToolKit
(MSTK), and the Sierra Tool Kit mesh (STKmesh) from Trilinos. In addition, a simple structured
hex-mesh generation capability is provided through STKmesh to facilitate simulations with simple
geometries.

The key features of the unstructured mesh infrastructure, AmanziMesh, are readily illustrated by
stepping through various aspects of defining, discretizing, and solving a flow and transport prob-
lem. The natural starting point is for the AmanziMesh to read an unstructured mesh. These un-
structured meshes are typically generated by the Platform Model Setup tools, but could come from
any tool that can write a mesh using the ExodusII format [9] (e.g., Cubit [7]). This format now
supports polygonal and polyhedral elements, and is readily partitioned across a distributed memory
machine using conversion utilities included with Trilinos. As the mesh file is read by AmanziMesh
on each processor, various data structures containing explicit representations of cells (highest level
mesh entities), nodes (lowest level mesh entities) and faces (intermediate level mesh entities bridg-
ing two cells) are created. In addition, it builds the local and global indexing of all mesh entities,
and establishes the required connectivity information.

To create a PK on this unstructured mesh various sets of faces and cells are required. First, to
define the boundary conditions regions of the boundary surface must be specified. These sets
of boundary faces are called “side sets”, and may be included in the mesh file, or specified in
the input file using geometric constraints. Similarly, parameters for the PK to use on specific
interior regions must be defined. These sets are called ”cell sets”, and they too may be specified

16 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

in the mesh file, or through regions tag in the input file. To take advantage of various packages
in Trilinos, the model parameters and solution are stored in native distributed Trilinos vectors or
multi-vectors. AmanziMesh builds the communication maps for these ePetra vectors as it reads the
mesh. With these “side sets”, “cell sets”, and ePetra maps defined, the discretization toolsets can
create the discrete systems of equations that will be evolved in time for this simulation. In the case
of implicit integration or steady-state calculations, the systems are solved by the Trilinos nonlinear
solver, NOX.

Spatial discretizations were another fundamental hurdle for unstructured meshes, because grid dis-
tortion can destroy important properties of the discrete operators (e.g., accuracy and monotonicity).
But significant progress has been made on these discretizations in the last decade. This is particu-
larly true for the mimetic finite difference (MFD) methods highlighted above, which have matured
to handle general polygonal/polyhedral cells. In fact, these cells are not required to be convex,
making these methods ideal for logically structured grids. In addition, these discretizations can be
optimized through free-parameter selection to preserve the discrete maximum principle in many
cases.

3.3 Common source

The dual mesh option creates very little overhead from a code development perspective, while its
richer development and capability environment is a significant advantage for keeping pace with
emerging architectures. Specifically, most large mesh dependent components or libraries, such as
the mesh toolkits and multigrid solvers, are available as third party libraries. Also, in a flexible
simulation code such as Amanzi, a significant amount of code is devoted to mesh independent
tasks. For example, parsing and verifying input files, and interfaces to community standardized
specifications of material properties, such as GSLib. In the current implementation of Amanzi,
the MPC weakly (sequentially) couples the Transport PK and the Reaction PK. In this case the
the reaction network appears in the form of a pure ODE with no spatial dependence, and hence,
no explicit dependence on the spatial layout of the data. Hence the identical Reaction PK is used
in both the structured and unstructured Amanzi simulations. It is highly beneficial to identify
these opportunities that both reduce coding redundancy and ensure a level consistency between the
meshing options.

4 Third-Party Libraries

In order to accelerate the software development of ASCEM, one of the main design strategies
is to leverage existing capabilities wherever possible. In fact, many capabilities in the form of
software frameworks have already been developed by other DOE programs and it makes sense
to take advantage of these efforts. Here, a framework describes a software layer that provides
basic functionality to a code project in a consistent and clearly defined manner. Almost all modern
software designs use some type of framework and ASCEM is no exception. However, our design
is also heavily dependent on the use of third-party libraries (TPLs) to build the Amanzi framework.

Using a TPL is an appealing way to reduce costs and quickly launch a project. It reinforces the

17 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

concept of a modular design and allows developers to focus on algorithm development and not
spend valuable time on a capability or functionality that has already been implemented. However,
using a TPL framework can also be prescriptive. It should be noted that accepting third-party
software into a project is not free; in fact, it may just transfer development costs to a future point
in the software life-cycle. These costs are incurred as the host code matures and it must continue
to comply with the standards and assumptions that the third-party framework imposes on its users.
In addition, the host code may have to determine the appropriate course of action should a TPL
stop being developed or supported.

An example of this, is the prevalent use of the Message Passing Interface (MPI) standard in parallel
HPC codes. This standard has allowed the development of parallel algorithms that are distributed
across thousands of compute resources. Without MPI, every code would need a software layer
to communicate between processes and this software would require significant time to port each
time a code was ported to a new machine. By accepting the MPI standard and designing process
communication around the MPI APIs, code projects transferred the time spent developing commu-
nication software to developing scientific software. However, the MPI standard assumes that the
computing environment is homogeneous and every code that depends on MPI as a communication
library also makes this same assumption. With emergence of heterogeneous computing hardware,
some of the time and money saved using MPI must now be reinvested to redesign and refactor
codes for emerging computer architectures.

This example also demonstrates another hazard of using TPLs in any project. Codes with explicit
MPI function calls throughout the source will require a difficult and costly refactoring to support a
heterogeneous computing environment. Alternatively, establishing an interface layer that bridges
the host code to the library (i.e., a wrapper) serves to isolate the third-party functions. This isolation
creates a design that the host code can manage and adapt more efficiently. In Amanzi, interface
layers are used to minimize direct calls to TPL interfaces and routines.

The incorporation of third-party libraries (TPLs) is an inevitable aspect of efficiently constructing
a large software framework. There is a delicate balance between the benefits of incorporating
a well-designed TPL, and the need to accept the organization it may impose on the structure of
the code that uses them. In some cases, adoption of a TPL will be a temporary approach for
prototyping designs/implementations. In other cases, the TPL’s will provide key functionality for
Amanzi. Trilinos, BoxLib and many of the other software packages used in Amanzi are examples
of the latter.

5 Computer Architectures

The Amanzi simulator must run on a diverse set of hardware configurations and operating system
environments for it to be useful to the large customer base that it must support. In particular,
the project’s build system that generates libraries, binaries and test suites must work seamlessly
between UNIX-like and Windows systems. Towards this goal, the Amanzi project has decided
to use the CMake open source build system from Kitware [6], which is committed to platform
independence. CMake parses simple text configuration files that generate native build files such as
UNIX Makefiles, Eclipse project files, or XCode project files. An additional benefit is the Kitware
CTest system, which integrates testing tools directly into any CMake build system. Amanzi will

18 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

Akuna

Platform Toolsets
Agni

WorkFlow Interface
Amanzi

HPC Simulator

Figure 4: Schematic showing the relationship of the Platform Toolsets, Akuna and Agni, with the
HPC Simulator, Amanzi.

use both of these systems to provide a consistent process for adding and removing source files
and for creating tests. The last feature is crucial for the verification tasks. In particular, this will
encourage developers to write and execute tests as a part of their normal code development work
flow and give users confidence that the code is generating consistent and correct answers.

6 Interaction with Platform

ASCEM’s Platform Toolset is responsible for packaging the problem-specific parameters discussed
above, and then launching the Amanzi simulator executable along with these instructions. Amanzi
in turn evolves the model processes, generates the requested output, and returns control to Platform.

Interaction with the Platform and Integrated Toolsets software is managed by a special component
dubbed Agni. The current mechanism for communication between the two thrusts is through the
exchange of XML (Extensible Markup Language) files containing problem descriptions. This
facilitates the recording of simulation parameters by giving it a representation outside of each
software component. It also allows us to draw on the extensive collection of libraries and resources
for creating, parsing and manipulating XML files.

6.1 Problem setup

The Agni interface connecting ASCEM’s Platform toolset, Akuna to Amanzi is sufficiently robust
to convey the full set of parameters required to carry out a simulation. This includes boundary
condition specifications (functional forms and specific associated values), initialization informa-
tion, material properties, the chemical model, and specific execution instructions. The chemical
model includes the definition of chemical species and their phases. Execution instructions include
generic parameters such as simulation time, and mesh-specific instructions, such as AMR regrid-
ding frequency.

Geometrical regions provide a fundamental abstraction for communicating run-specific instruc-
tions from Platform to Amanzi. Regions are mathematical descriptions of geometrical entities,
such as points, lines, planes, surfaces and volumes, and are used to identify the bounding surfaces

19 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

of the simulation domain and locations for output diagnostics.

Akuna also specifies the set of quantities required for output, including plotting and analysis
data (possibly including the derivation of discretization-specific diagnostics), execution statistics,
checkpoint/restart instructions, and a special subset of data labeled observations, that will be used
for uncertainty quantification and sensitivity analyses, and decision support. It should be noted that
while control of the output (frequency/volume, quantity selection) is passed via Platform, analysis
and checkpoint data in particular are assumed to be “large”. The Amanzi specification for large
data incorporates multiple formats allowing high-performance implementations to be tailored to
specific features of the meshing strategy.

Observations are a special class of output data returned through the Plaform-Amanzi interface.
These observations consist of a small set of basic values (reals, integers, strings) that represent a
summary of the simulation that is specific to a particular study and a specific model. It is envisioned
that an important execution mode for Amanzi will be geared for the construction of surrogate
models or other parameter estimation or uncertainty analysis related activities. In this case, only
a handful of key diagnostic quantities, rather than the entire computed flow field, will need to
be returned to the Platform. Observations involve point-level diagnostics, or integrals of field
quantities over particular geometric regions, and are transmitted in a format that is generic to the
choice of meshing strategy.

Akuna and Amanzi are tightly integrated with respect to a common understanding of the various
parameters implicit within this specification. In particular, a finite set of generic parameterized
geometrical features and boundary condition functional forms are supported. Material properties
may be communicated through several options. One example might be to use pointers to files in
the community standard GSLib file format. Other options are also being investigated. The format
and transmission procedures for observations is not yet established. Large data files for detailed
analysis and execution restart are not returned directly to Akuna, although their format will be
compatible with the ASCEM data analysis toolsets.

7 Conclusions

In this document the high-level design of Amanzi was presented. The discussion focused on the
motivation and components of the object-oriented hierarchical design and its alignment with the
processes being modeled and simulated. This design ensures that Amanzi is both a flexible and
extensible simulator suitable for use and development by this broad community. In particular,
the Multi-Process Coordinator (MPC) was introduced as well as the discrete representation of the
process models, namely Process Kernels (PKs). The importance and flexibility of the dual struc-
tured/unstructured grid approach was discussed, along with the supporting toolsets, namely, the
mesh infrastructure, discretizations, reactions, and solvers, were highlighted. Key mesh infrastruc-
ture and discretization methods were highlighted, and the motivation and critical role of leveraging
Third Party Libraries (TPLs) was presented. However, implementation issues such as languages,
interfaces, and data structures are beyond the scope of this high-level design document and will be
presented in a upcoming Amanzi documentation. Finally, A high-level description of the interac-
tion of Amanzi with the Platform Toolset Akuna was discussed.

20 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

REFERENCES

[1] I. Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids.
Comp. Geosciences, 6:405–432, 2002.

[2] T. J. Barth and D. D. Jespersen. The design and application of upwind schemes on unstruc-
tured meshes. AIAA, paper 89-0366, Jan 1989.

[3] J. B. Bell, P. Colella, and J. A. Trangenstein. Higher-order Godunov methods for general
systems of hyperbolic conservation laws. JCP, 82(2):362–397, June 1989.

[4] Boxlib: A block-structured amr framework. https://ccse.lbl.gov/BoxLib/index.html.

[5] F. Brezzi, K. Lipnikov, M Shashkov, and V. Simoncini. A new discretization methodology for
diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg.,
196:3682–3692, 2007.

[6] Cmake, the cross-platform build system. http://cmake.org.

[7] Cubit: Geometry and mesh generation toolkit. http://cubit.sandia.gov/.

[8] Michael G. Edwards and Hongwen Zheng. Double-families of quasi-positive darcy-flux ap-
proximations with highly anisotropic tensors on structured and unstructured grids. J. Comput.
Phys., 229(3):594–625, 2010.

[9] Exodus ii: A finite element data model. http://sourceforge.net/projects/exodusii.

[10] K Lipnikov, D Svyatskiy, and Y Vassilevski. A monotone finite volume method for advection-
diffusion equations on unstructured polygonal meshes. J. Comput. Phys., 229(11):4017–32,
2010.

[11] Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2003.

[12] J. Morel, R. Roberts, and M. Shashkov. A local support-operators diffusion discretization
scheme for quadrilateral r − z meshes. J. Comput. Phys., 144:17–51, 1998.

[13] G. S. H. Pau, A. S. Almgren, J. B. Bell, and M. J. Lijewski. A parallel second-order adaptive
mesh algorithm for incompressible flow in porous media. Phil. Trans. R. Soc. A, 367:4633–
4654, 2009.

[14] C. Le Potier. Finite volume scheme satisfying maximum and minimum principles for
anisotropic diffusion operators. In R. Eymard and J.-M. Herard, editors, Finite Volumes
for Complex Applications V, pages 103–118, 2008.

[15] Zhiqiang Sheng and Guangwei Yuan. The finite volume scheme preserving extremum prin-
ciple for diffusion equations on polygonal meshes. J. Comput. Phys., 230(7):2588–2604,
2011.

21 ascemdoe.org January 11, 2012

High-Level Design of the Multi-Process HPC Simulator

[16] C. Steefel, D. Moulton, and P. Lichtner et al. Mathematical formulation requirements and
specifications for the process models. Technical Report ASCEM-HPC-2011-01-0a, Lawer-
ence Berkeley National Laboratory, 2011.

[17] J. A. Trangenstein and J. B. Bell. Mathematical structure of black-oil reservoir simulation.
SIAM J. Appl. Math., 49:749–783, 1989.

[18] J. A. Trangenstein and J. B. Bell. Mathematical structure of compositional reservoir simula-
tion. SIAM J. Sci. Stat. Comput., 10:817–845, 1989.

[19] B. van Leer. Towards the ultimate conservative difference scheme, v. a second order sequel
to godunov’s method. J. Comput. Phys., 32(1):101–136, 1979.

22 ascemdoe.org January 11, 2012

	Executive Summary
	Introduction
	High-Level Design of Amanzi
	Simulation Driver
	Decomposition of Modeling and Simulation
	Multi-process Coordinator
	Process Kernels

	HPC Toolsets
	Mesh Infrastructure
	Discretizations Toolsets
	Solvers

	Core Services

	Structured and Unstructured Options
	Structured Grid
	Unstructured Grid
	Common source

	Third-Party Libraries
	Computer Architectures
	Interaction with Platform
	Problem setup

	Conclusions
	References

